
Project: Enterprise Architecture in an Agile world
DAVID PEREIRA and PEDRO SOUSA∗, Instituto Superior Técnico, Portugal

Enterprise Architecture and Agile methodologies are two increasingly im-
portant notions in the enterprise world. The first is crucial to ensure business
success through documentation of the current practices of the enterprise,
and enable innovation through the safety of well-documented processes and
functions [14]. The latter helps reduce operation costs, and in turn, maximize
profits, through different software development processes [1]. This study
utilizes the already defined workflows of an Agile development project to
develop automated processes that help in creating and maintaining archi-
tectural representations of the project. The Enterprise Architecture follows
the principles stated in TOGAF’s ADM [12] and it uses the Atlas Enterprise
Cartography Tool [11] to support the creation of dynamic architectural
assets, providing a mapping between Agile development and Enterprise
Architecture.

Additional Key Words and Phrases: Enterprise Architecture, Agile method-
ologies, TOGAF ADM, Atlas Enterprise Cartography Tool

1 INTRODUCTION
The notion of Enterprise Architecture is ever-present within orga-
nizations. With the demanding requirements of the technological
landscape, it is becoming harder to process information and control
change. Enterprise Architecture is therefore gaining importance,
as a method to control and document the organization’s current
practices and as an enabler of change and evolution [16].
On the other hand, software development methodologies are

evolving to prioritize a fast product delivery, focused on the client’s
needs. This is achieved by bridging the gap between the business
and the development aspects, and prioritizing in-person meetings
and discussion. These are the principles of Agile development, as
stated in the Agile Manifesto [3].

There are some incompatibilities between Enterprise Architecture
and Agile development. The main incompatibility is the Agile mind-
set of focusing on delivering complete software as fast as possible
and sacrificing the documentation to achieve that.
There is evidence that Enterprise Architecture can be deployed

in the context of Agile development methodologies. Studies show
that doing so may lead to several benefits to both the Agile devel-
opment team, and the governing body of the organization [4, 15].
Additionally, models that map Agile development and Enterprise
Architecture are also available [5, 7]. These models focus on attribut-
ing different roles to the team members, regarding the creation of
the architecture, and propose a mapping with the TOGAF ADM
framework.
To create dynamic documentation, the Atlas Cartography Tool

[11] is used alongside TOGAF’s ADM [12], guiding the development
of the Enterprise Architecture assets.
The main objectives are the easy maintainability of the archi-

tecture, without requiring excessive manual effort and minimizing
the impact that the solution has on the already existing workflow,
supporting the ever-changing needs and requirements of the devel-
opment team and client.

Authors’ address: David Pereira, david.apolinario.pereira@tecnico.ulisboa.pt; Pedro
Sousa, pedro.sousa@tecnico.ulisboa.pt, Instituto Superior Técnico, Av. Rovisco Pais 1,
Lisbon, Portugal, 1049-001.

Fig. 1. Phases of TOGAF’s Architecture Development Method

The following Sections provide an overview of some important
concepts, utilized on this study.

1.1 Enterprise Architecture
Enterprise Architecture is a widely studied topic. Zachman defines
Enterprise Architecture as “that set of descriptive representations
(i.e. ‘models’) that are relevant for describing an Enterprise such
that it can be produced to management’s requirements (quality) and
maintained over the period of its useful life (change)” [16]. These
representations are created by joining domains that may have been
unrelated in the past. This poses a challenge, as different domains
are certain to differ in definitions and practices used [9].
With the gradual increase in the number of enterprises and the

increasingly competitive market, innovation is now more than ever
a requirement for success. Having good Enterprise Architecture
practices is crucial. Providing insight on the business processes of
the company, as well as keeping records of customers and partners
are two advantages of Enterprise Architecture [8].

1.2 TOGAF ADM
To guide the creation of the project’s Enterprise Architecture, TO-
GAF’s Architecture DevelopmentMethod [12]was the chosen frame-
work. This framework supports the creation of the architecture
through different phases that can be adapted to the needs of each
Enterprise, with a focus onmanaging requirements during thewhole
cycle. Additionally, several documents and assets are recommended
to support each phase. An overview of the Architecture Develop-
ment Method can be seen in Figure 1.

Themost relevant phases that support the created architecture are
five phases. Phase 0 (Preliminary Phase) contains the groundwork of
the cycle. In this phase, details such as the context and the scope of



2 • Pereira and Sousa

the architecture are detailed. Phase A (Architecture Vision) defines
the value that should be provided by the architecture, as well as
the compilation of information regarding vision, strategy, and goals.
Phase B (Business Architecture) supports the creation of rules and
guidelines that detail how the architecture will achieve the required
business goals. Phase C (Information Systems Architecture) creates
a mapping between the Business Architecture artifacts and the
Data and Application artifacts. Phase D (Technology Architecture)
creates documentation regarding the decisions behind technological
choices.

1.3 Atlas Enterprise Cartography Tool
The Atlas Enterprise Cartography Tool is an instrument that can
be used to control transformations within an organization, through
the use of Enterprise Architecture principles. To achieve this, Atlas
provides a repository where data can be gathered both manually
and automatically and several representations of the imported data,
that can be configured to suit the needs of the enterprise.
The data is structured in classes and objects, and several rep-

resentations can be created on top of it, most notably, tables that
contain objects and their properties, matrices that relate objects of
two classes on a specific relation, and blueprints. These are explored
to create the solution.

1.4 Agile Development Methodologies
Agile Software Development methodologies are defined in the Agile
Manifesto [3] through a list of principles. Agile values the continu-
ous delivery of quality software to the customer, while embracing
change in the requirements “even late in development”. Another
important aspect of Agile is having the business side and the de-
velopers working closely together on a daily basis, with the goal of
reducing development time and improving agility and adaptability.

Agile Development is increasing in popularity among enterprises.
Scrum [10] is currently the most widely used Agile development
methodology, representing 66% of overall Agile use, according to
Digital.ai’s 15th State of Agile Report [6]. Additionally, 52% of re-
spondents claim that their enterprise has adopted Agile as the go-to
development methodology, and only 3% claim that Agile develop-
ment is not used on any scenario.

2 SOLUTION IMPLEMENTATION

2.1 Solution Architecture
Figure 2 contains an overview of the architecture of the created
solution. The architecture representation follows the ArchiMate
Enterprise Architecture Modeling Language [13]. The created Atlas
Agile Integration is integrated into the Atlas solution.

The Atlas Agile Integration application includes three compo-
nents:

(1) Azure DevOps Batch Job: This component is responsible
for collecting information from the DevOps environment
utilized by the Agile team, and importing it into Atlas. This
program can be run periodically to ensure that the latest
changes are reflected in the Atlas repository, as well as au-
tomatically, ensuring that the project team does not need to
manually import the data.

Fig. 2. Solution Architecture

Table 1. Mapping between Azure DevOps Work Items and Atlas Architec-
tural Assets

Work Item Architectural Mapping
Epic Application

Feature Goal
Product Backlog Item Requirement

(2) Swagger File Parser: This component includes an integra-
tion with Swagger. Its main objective is to parse internal
documents to gather additional information that can be uti-
lized by the Atlas configuration to better represent the ar-
chitecture of the Project. Mainly, the information that can
be gathered from these files includes dependencies between
project modules, and external service utilization.

(3) Atlas Agile Repository Configuration: This component
includes all of the classes, objects, representations, and doc-
uments that are generated by Atlas, following TOGAF ADM
recommendations. Blueprints, matrices, and charts allow
for the visualization of the architecture during a specific
timestamp.

2.2 Supporting Project Details
The solution is based on a digital transformation project.

The project team chose to utilize Microsoft’s Azure DevOps [2]
environment to track the project’s progress. The DevOps environ-
ment includes information regarding backlog management, sprint
planning, and client acceptance. This information is used by Atlas
to represent the architecture of the project.
Azure DevOps’ work items are used to represent the details of

the project. A mapping between these Agile concepts and the Atlas
architectural ones is provided in Table 1. The development team
establishes each Epic as a different Application required to complete
the project. Under each Application, the team defines and aggregates
the Objectives and Requirements needed to successfully implement
each one.

3 RESULTS
This Section contains an overview of the created Enterprise Ar-
chitecture. Figure 3 contains the layers and components utilized



Project: Enterprise Architecture in an Agile world • 3

Fig. 3. Layers and components of the created Enterprise Architecture

Table 2. Description of the main architectural Representation Types

Representation Type Description

Catalog
Tabular view showing every
object of a certain class and
the most relevant properties

Map
Matrix view showing a
relation between the column
class and the row class

Blueprint

Visual representation
showing objects and
relevant relations,
according to the scope

to represent the architecture of the project. The representations
are divided into several categories following the TOGAF standard,
namely Architecture Vision, Business Architecture, Application
Architecture, Data Architecture, and Technology Architecture.

After establishing the architecture layers, the representations
were created. The types of representations used are detailed in Table
2. Catalogs are mainly used as a listing of the architectural objects.
Maps are used to relate two classes based on a relevant property, and
to also allow for quick updating of information. Finally, Blueprints
are used to overview important objects, and relevant properties and
relations, in specific contexts.

3.1 Architecture Vision Layer
The first layer of the proposed architecture is the Architecture Vision.
Similarly to the TOGAF standard, this layer includes the motivation
for the architecture, mainly focusing on the goals and requirements
that are established for the project. To support this layer, represen-
tations such as the Goal and Requirement Catalogs, representing

Application Integration HL - Extranet Application

Applications providing
Services

Requested Services Application Provided Services Applications requesting
Services

Commercial Application

Online Web Application

Product Management
Application

User Management
Application

Commercial Application
Service

Online Web Application
Service

Product Management
Application Service

User Management
Application Service

Extranet Application Extranet Application Service

Extranet Application
Subscription Service

Online Web Application

Fig. 4. The Application Integration Blueprint

C
la

im
 M

a
n

a
g

e
m

e
n

t 
A

p
p

lic
a

ti
o

n

C
o

m
m

e
rc

ia
l A

p
p

lic
a

ti
o

n

E
xt

ra
n

e
t 

A
p

p
lic

a
ti

o
n

E
x

tr
a

n
e

t 
C

lie
n

t 
A

p
p

lic
a

ti
o

n

E
xt

ra
n

e
t 

M
e

d
ia

to
r 

A
p

p
lic

a
ti

o
n

E
x

tr
a

n
e

t 
P

a
rt

n
e

r 
A

p
p

lic
a

ti
o

n

In
tr

a
n

e
t 

A
p

p
lic

a
ti

o
n

K
e

yC
lo

a
k

 A
p

p
lic

a
ti

o
n

M
a

n
a

g
e

m
e

n
t 

W
e

b
 A

p
p

lic
a

ti
o

n

O
n

lin
e

 W
e

b
 A

p
p

lic
a

ti
o

n

P
ro

d
u

c
t 

M
a

n
a

g
e

m
e

n
t 

A
p

p
lic

a
ti

o
n

R
u

le
 E

n
g

in
e

 A
p

p
lic

a
ti

o
n

U
s

e
r 

M
a

n
a

g
e

m
e

n
t 

A
p

p
lic

a
ti

o
n

Claim Management Application

Commercial Application

Extranet Application

Extranet Client Application

Extranet Mediator Application

Extranet Partner Application

Intranet Application

KeyCloak Application

Management Web Application

Online Web Application

Product Management Application

Rule Engine Application

User Management Application

Fig. 5. The Application Interaction Map Representation

tabular representation of every Goal and Requirement that is cur-
rently loaded into the Atlas repository (Table 3) are offered. Repre-
sentations listing every Goal and Requirement under its Domain,
offer a global view of the Architecture Vision.

3.2 Business Architecture Layer
To support the Business level of the architecture, the Requirements
and Goals utilized in the Architecture Vision phase were combined
with the information collected from the DevOps environment re-
garding the project teammembers that are assigned to each PBI, and
consequently, assigned to each Goal, Requirement, and Application.
To support this layer, representations such as the Business Actor
Context Blueprint are offered, showing the assets that are impacted
by a specific actor in some way.

3.3 Application Architecture Layer
Regarding the Application Architecture Layer, the main components
of this layer are the Application Component and the Application Ser-
vice classes. They represent the required software to be developed
and the communication interfaces established by them, respectively.
Similarly to the Architecture Vision Layer, Catalog views of the Ap-
plications are offered. Additionally, blueprints and matrices showing
dependencies between Applications are supported (Figures 4 and 5).



4 • Pereira and Sousa

Table 3. The Goal Catalog Representation

Name Strategic Domain Owner Description Productive Date Decommission Date

Claim Data Integration Claim Alice Clark The Claims received from the current
platform must be completely integrated. 07-02-2022 31-12-2022

Client Area Client Mark Evans A new Client Area that shows the past
and current Claims must be created. 27-06-2022 31-12-2022

Customer Support Client Mark Evans
A Customer Support feature must be
integrated into the new solution, with
a Chat Bot.

18-04-2022 01-06-2023

Document Access Control Document Bob Patel The Documents received from the
different platforms must be accessible. 04-07-2022 28-02-2023

Secure Sign-In Security John Irwin Sign-in must be performed through
secure protocols. 21-02-2022 19-05-2023

Goal Organic

Claim Client

Document Security

Claim Data Integration Client Area Customer Support

Document Access Control Secure Sign-In

Fig. 6. The Goal Organic Blueprint on 07/02/2022

3.4 Technology Architecture Layer
The Technology Architecture Layer features the infrastructure that
supports the Application, Business, and Vision landscapes. System
Software represents software that supports the use of the Appli-
cations and that belong to a third-party vendor, supplied through
licensing. The Nodes represent the physical machines that host the
Applications and all of their functionality. It supports Catalogs of
both these notions, as well as representations such as the Node and
System Software Context Blueprints, depicting the Applications that
are deployed at a certain Node and the usage of System Software
per Application.

3.5 Evolution of the Architecture
The highlighted components support a layered Enterprise Architec-
ture. However, the Architecture of an Agile development project is
constantly changing and evolving, with new requirements from the
client and unforeseen changes during development.

To combat this, a time bar is available in every Atlas representa-
tion, which allows for quick browsing through dates where state
changes occur. This highlights the evolution of the Architecture in
a visual manner, as colors are assigned to each state. For instance,
Figures 6 and 7 show an example of how the time bar affects the
representations in Atlas. As time passes, Goals shift from under
development (grey fill), productive (no fill), and decommissioned
(red fill).

This information can change according to the imported data.
For instance, if a Goal’s decommission date property were to be
changed in some manner, the result would be immediately visible
in the representations that showed that Goal.

Goal Organic

Claim Client

Document Security

Claim Data Integration Client Area Customer Support

Document Access Control Secure Sign-In

Fig. 7. The Goal Organic Blueprint on 01/06/2023

4 DISCUSSION

4.1 Resulting Architecture
The Architecture detailed in Section 3 shows a collection of repre-
sentations that can be used during Agile software development to
represent the current and planned state of the assets. The solution
makes use of the identified data suppliers and current workflows
to generate documentation that evolves as new requirements are
created and as new modules are developed. This creates a base
that can be extended upon as the needs of the enterprise and the
development team shift.
On the other hand, depending on the priorities of the project

team, data can be manually inserted by any team member when
there are no viable ways to automate its collection, without the need
for deploying a separate architectural team.

Therefore, the result is a template that supports the creation of a
layered architecture, focusing on the Architecture Vision (Section
3.1), Business Architecture Layer (Section 3.2), Application Architec-
ture Layer (Section 3.3), and Technology Architecture Layer (Section
3.4), corresponding to phases A, B, C, and D of the TOGAF ADM,
respectively.

4.2 Assessment of the Proposed Solution
Looking at the impact of the solution, three categories are explored.

Regarding the objective of gathering information whilst avoiding
the disruption of the team’s workflow, this is achieved with the
presented automation tools. These tools have a very low impact on
the workflow, and automatically import information into the Atlas
repository.



Project: Enterprise Architecture in an Agile world • 5

Regarding the objective of automatically generating architec-
tural documentation without introducing manual overheads, this is
achieved by the creation of the dynamic representations in Atlas
shown above. Every time new information is added through any
means, the maps are updated, ensuring that no manual effort is
required to reconfigure the views.

Regarding the effort required to represent the architecture, there
are some mixed results. On one hand, information that is structured
and included in the identified data sources, can be shown at no extra
cost to the development team. On the other hand, any information
that is not possible to automatically collect, i.e. external documents,
requires manual effort to be introduced into Atlas.
To summarize, a mapping between Agile development and the

TOGAF framework is proposed and an Enterprise Architecture that
follows the TOGAF ADM recommended artifacts is presented. The
Atlas repository acts as the Architecture Repository, containing the
updated assets and representations. The Architecture Vision layer
of the Architecture supports the Architecture Principles, through
the Goal and Requirement tables and representations. The Business,
Application, and Technology layers of the Architecture include the
assets that are required by the Architecture Definition Document.
All of the representations include the lifecycle of the objects, al-
lowing each user to look into the future of the project and look at
the planned changes, supporting an Architecture Roadmap of the
project.

5 CONCLUSION
After assessing the solution and resulting architecture, two main
conclusions are reached. The first is that Agile development and En-
terprise Architecture are not mutually exclusive. This study shows
an example of how an Enterprise Architecture framework (TOGAF
ADM) can be deployed in the context of an Agile development
project, without disrupting the workflow, and utilizing the available
resources to facilitate its implementation.

The second discovery is that by analyzing the different informa-
tion sources of an Agile project, it was possible to deploy automation
processes that translated such information into architectural data.
This proved useful when creating the underlying architecture, as
it significantly lowered the manual effort required to maintain the
architectural assets, allowing the project members to focus on de-
livering software instead of constantly updating the architecture.
This is, however, highly dependant on the available data sources.
The automated generation of representations requires at least some
updated information to ensure the value of the architecture as a
whole. Failing to identify and create these automated features, will
lead to an increase in required manual effort.

REFERENCES
[1] Eman A Altameem. 2015. Impact of agile methodology on software development.

Computer and Information Science 8, 2 (2015), 9.
[2] Elijah Batkoski. 2022. Azure DevOps Services REST API Reference. https://

learn.microsoft.com/en-us/rest/api/azure/devops/ publisher: Microsoft, Accessed
18/10/2022.

[3] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron
Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, and Dave Thomas. 2001. Manifesto for Agile Software Develop-
ment. https://www.agilemanifesto.org/ https://agilemanifesto.org/. Accessed

10/09/2022.
[4] Mert Canat, Núria Pol Català, Alexander Jourkovski, Svetlomir Petrov, Martin

Wellme, and Robert Lagerström. 2018. Enterprise architecture and agile devel-
opment: Friends or foes?. In 2018 IEEE 22nd International Enterprise Distributed
Object Computing Workshop (EDOCW). IEEE, 176–183.

[5] Wissal Daoudi, Karim Doumi, and Laila Kjiri. 2020. An Approach for Adaptive
Enterprise Architecture.. In ICEIS (2). 738–745.

[6] Digital.ai. 2021. 15th Annual State of Agile Report. (2021). https://info.digital.ai/
rs/981-LQX-968/images/SOA15.pdf Accessed 03/10/2022.

[7] Sebastian Hanschke, Jan Ernsting, and Herbert Kuchen. 2015. Integrating agile
software development and enterprise architecture management. In 2015 48th
Hawaii International Conference on System Sciences. IEEE, 4099–4108.

[8] Henk Jonkers, Marc M Lankhorst, Hugo WL ter Doest, Farhad Arbab, Hans
Bosma, and Roel J Wieringa. 2006. Enterprise architecture: Management tool and
blueprint for the organisation. Information systems frontiers 8, 2 (2006), 63–66.

[9] Marc Lankhorst et al. 2009. Enterprise architecture at work. Vol. 352. Springer.
[10] Ken Schwaber. 1997. Scrum development process. In Business object design and

implementation. Springer, 117–134.
[11] Pedro Sousa, Ricardo Leal, and André Sampaio. 2018. Atlas: the enterprise cartog-

raphy tool. In Proceedings of 8th the Enterprise Engineering Working Conference
Forum, Vol. 2229.

[12] The Open Group. 2018. The TOGAF Standard, Version 9.2 - Introduction to
Part II. https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html. Accessed
14/10/2022.

[13] The Open Group. 2019. ArchiMate® 3.1 Specification. https://pubs.opengroup.
org/architecture/archimate3-doc/ https://pubs.opengroup.org/architecture/
archimate3-doc/. Accessed 18/09/2022.

[14] S Townson. 2008. Why does Enterprise Architecture Matter. White Paper, The
Open Group (2008).

[15] Mohamed Watfa and Tarek Kaddoumi. 2021. A foundational framework for agile
enterprise architecture. International Journal of Lean Six Sigma (2021).

[16] John A Zachman. 1997. Enterprise architecture: The issue of the century. Database
programming and design 10, 3 (1997), 44–53.

https://learn.microsoft.com/en-us/rest/api/azure/devops/
https://learn.microsoft.com/en-us/rest/api/azure/devops/
https://www.agilemanifesto.org/
https://agilemanifesto.org/
https://info.digital.ai/rs/981-LQX-968/images/SOA15.pdf
https://info.digital.ai/rs/981-LQX-968/images/SOA15.pdf
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap04.html
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/

	Abstract
	1 Introduction
	1.1 Enterprise Architecture
	1.2 TOGAF ADM
	1.3 Atlas Enterprise Cartography Tool
	1.4 Agile Development Methodologies

	2 Solution Implementation
	2.1 Solution Architecture
	2.2 Supporting Project Details

	3 Results
	3.1 Architecture Vision Layer
	3.2 Business Architecture Layer
	3.3 Application Architecture Layer
	3.4 Technology Architecture Layer
	3.5 Evolution of the Architecture

	4 Discussion
	4.1 Resulting Architecture
	4.2 Assessment of the Proposed Solution

	5 Conclusion
	References

